Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Fabrication of enzyme-degradable and size-controlled protein nanowires using single particle nano-fabrication technique

Omichi, Masaaki*; Asano, Atsushi*; Tsukuda, Satoshi*; Takano, Katsuyoshi*; Sugimoto, Masaki; Saeki, Akinori*; Sakamaki, Daisuke*; Onoda, Akira*; Hayashi, Takashi*; Seki, Shu*

Nature Communications (Internet), 5, p.3718_1 - 3718_8, 2014/04

 Times Cited Count:35 Percentile:77.9(Multidisciplinary Sciences)

Protein nanowires exhibiting specific biological activities hold promise for interacting with living cells and controlling and predicting biological responses such as apoptosis, endocytosis and cell adhesion. Here we report the result of the interaction of a single high-energy charged particle with protein molecules. Degradation of the human serum albumin nanowires was examined using trypsin. The biotinylated human serum albumin nanowires bound avidin, demonstrating the high affinity of the nanowires. Human serum albumin-avidin hybrid nanowires were also fabricated from a solid state mixture and exhibited good mechanical strength. The biotinylated human serum albumin nanowires can be transformed into nanowires exhibiting a biological function such as avidin-biotinyl interactions and peroxidase activity. The present technique is a versatile platform for functionalizing the surface of any protein molecule with an extremely large surface area.

Journal Articles

Anisotropically conducting films consisting of sub-micron copper wires in the ion track membranes of poly(ethylene terephthalate)

Maekawa, Yasunari; Koshikawa, Hiroshi; Yoshida, Masaru

Polymer, 45(7), p.2291 - 2295, 2004/03

 Times Cited Count:8 Percentile:28.47(Polymer Science)

Ion track membranes of poly(ethylene terephthalate) (PET) are applied to the production of anisotropically conducting films possessing copper wires of less than sub-micron in diameter. The membranes possessing cylindrical pores of 1.9 $$mu$$m and 200 nm in diameter were prepared by irradiation of $$^{129}$$Xe$$^{23+}$$ ion beams followed by etching in an aqueous NaOH. Copper wires were deposited into the pores by electrochemical plating in aqueous copper sulfate solution to prepare the PET/Cu hybrid membranes. The copper wires with 1.9 $$mu$$m in diameter showed wavelike surface roughness, resulting from the roughness of the pore side wall, whereas the copper wires with 200 nm in diameter showed smooth surfaces. The resistances of the membranes measured by a four terminal resistance method are in good agreement with the calculated values, indicating that the hybrid membranes possess conductivity perpendicular to the membrane surfaces but not parallel to the surfaces.

2 (Records 1-2 displayed on this page)
  • 1